

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Interdisziplinäre
Anwendungen
Raumbezogener
Informationstechnik

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Organisatorisches

- Alle Zeitangaben unter Vorbehalt -

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

- Kennenlernen
 - Martin Unold
 - Wissenschaftlicher Mitarbeiter am i3mainz
 - Büro in Raum C0.04
 - E-Mail: martin.unold@hs-mainz.de
 - Prof. Kai-Christian Bruhn
 - Im November
- Unterlagen
 - http://unold.net/idarit

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

- Modulziele Was lernen Sie hier?
 - In interdisziplinärer Zusammenarbeit Aufgabenstellungen und Lösungsmöglichkeiten zur Dokumentation raum- und zeitbezogener Informationen aus den Geisteswissenschaften zu formulieren und entsprechende Projekte zu planen
 - Geoinformationssysteme für die genannten Fachgebiete selbst anzuwenden
 - Anforderungen an digitale Bestände von Forschungsdaten hinsichtlich standardisierter Datenhaltung und Langzeitverfügbarkeit zu verstehen und umzusetzen

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

- Modulinhalte Was sind die Themen?
 - Bedeutung raumbezogener Information in ausgewählten geisteswissenschaftlichen Fachgebieten
 - Zeit- und raumbezogene Problemstellungen
 - Modellierung für die informationstechnische Bearbeitung
 - Design von Datenbanken und GIS
 - Dateneingabe in ein GIS
 - Analysefunktionen eines GIS
 - Präsentationsmöglichkeiten eines GIS
 - Austausch von Datenbeständen auf Grundlage standardisierter Formate
 - Beispielprojekt

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

- Termine
 - 2 SWS Vorlesung Do, 14 16 Uhr (B1.09)
 - 2 SWS Übung Do, 16 18 Uhr (C0.06)
 - 1 SWS Seminar Blockveranstaltung
 - 5.10., 12.10., 19.10. Einführung in Semantic Web bei Martin Unold
 - 26.10.
 Klausur zum Thema Semantic Web + Vergabe Web-Projekt
 - Ab 2.11.
 GIS-Projekt bei Prof. Bruhn

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

- Termine (werden noch genauer spezifiziert)
 - Blockveranstaltung Anfang Dezember Präsentation Web-Projekt
 - Ende Dezember
 Abgabe GIS-Projekt
 - Anfang Januar
 Abgabe Web-Projekt
 - Ende Januar
 Mündliche Prüfung

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

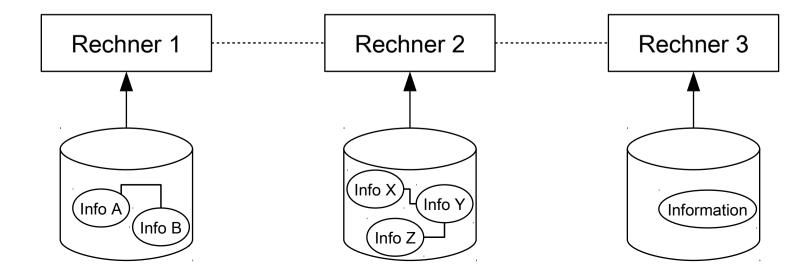
- Anforderungen Berufsbegleitender Master Geoinformatik
 - Studienleistung
 - Anwesenheit und Mitarbeit in den Übungen
 - Abgabe GIS-Projekt
 - Prüfungsleistung (benotet)
 - Klausur Semantic Web (40%)
 - GIS-Projekt (60%)

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

- Anforderungen Konsekutiver Master Geoinformatik und Vermessung
 - Studienleistung
 - Anwesenheit und Mitarbeit in den Übungen
 - Abgabe GIS-Projekt
 - Prüfungsleistung (benotet)
 - Klausur Semantic Web (40%)
 - Web-Projekt (60%)
 besteht aus Präsentation, Abgabe und mündlicher Prüfung

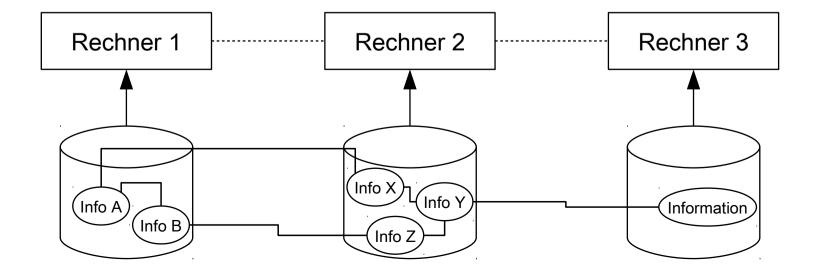
Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Semantic Web


Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

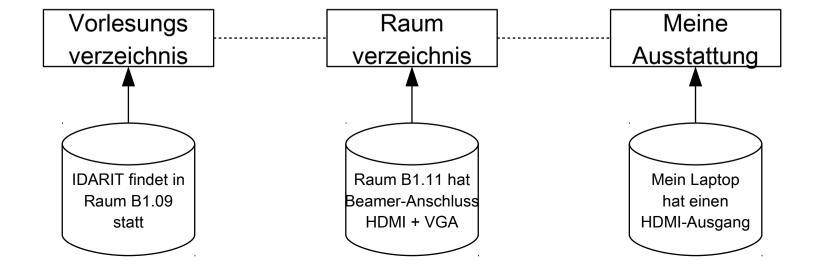
Semantic Web

 Die Idee ist, Informationen zwischen Rechnern über das Web zu verbinden, dadurch austausch- und verwertbarer zu machen


Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Semantic Web

- Die Idee ist, Informationen zwischen Rechnern über das Web zu verbinden, dadurch austausch- und verwertbarer zu machen
- Ziel ist die Erstellung eines "gigantischen globelen Graphs", in dem möglichst viele Daten weltweit miteinander vernetzt sind


Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Semantic Web

- Beispiel
 - Kann ich meinen Laptop für die Präsentation in der IDARIT-Vorlesung verwenden?

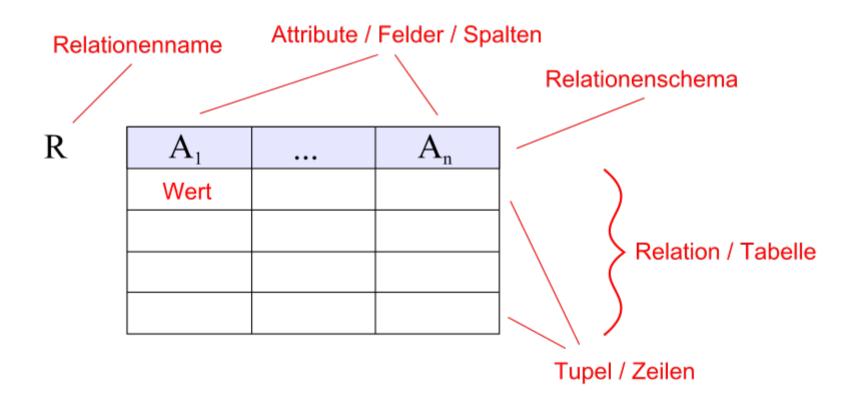
Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Datenbanken

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Relationale Datenbanken

- Am weitesten verbreitetes Datenbankmodell
- Grundlegendes Konzept
 - Tabellen (Relationen)
 - Der Kopf der Tabelle ist das Relationenschema
 - Jede Zeile einer Tabelle (Tupel) ist ein Datensatz
 - Jedes Tupel enthält gemäß dem Relationenschema der Tabelle gewisse Werte in jeder Spalte (Attribute)
 - Beziehungen zwischen Tabellen können über Schlüssel-Attribute ausgedrückt werden


Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Relationale Datenbanken

Relation (allgemein)

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Relationale Datenbanken

Relation Buch

Beispiel einer Relation "Buch":

Buch-ID	Autor	Verlag	Verlagsjahr	Titel	Datum
1	Hans Vielschreiber	Musterverlag	2007	Wir lernen SQL	13.01.2007
2	J. Gutenberg	Gutenberg und Co.	1452	Drucken leicht gemacht	01.01.1452
3	G. I. Caesar	Handschriftverlag	-44	Mein Leben mit Asterix	16.0344
5	Galileo Galilei	Inquisition International	1640	Eppur si muove	1641
6	Charles Darwin	Vatikan-Verlag	1860	Adam und Eva	1862

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Relationale Datenbanken

Beispiel: Datenbank einer Bibliothek

Relation "Nutzer"

Nutzer-ID	Vorname	Nachname
10	Hans	Vielschreiber
11	Jens	Mittelleser
12	Erich	Wenigleser

Beispiel einer Relation "Buch":

Buch-ID	Autor	Verlag	Verlagsjahr	Titel	Datum
1	Hans Vielschreiber	Musterverlag	2007	Wir lernen SQL	13.01.2007
2	J. Gutenberg	Gutenberg und Co.	1452	Drucken leicht gemacht	01.01.1452
3	G. I. Caesar	Handschriftverlag	-44	Mein Leben mit Asterix	16.0344
5	Calileo Calilei	Inquisition International	1640	Eppur si muove	1641
Rel	ation	Vatikan-Verlag	1860	Adam und Eva	1862
P. 41: - I				-	

"Entliehen"

Nutzer-ID	Buch-ID
10	1
10	2
10	3
12	5
12	6

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Relationale Datenbanken

Beziehungen zwischen Relationen

Beispiel einer Relation "Buch":

Buch-ID	Autor	Verlag	Verlagsjahr	Titel	Datum
1	Hans Vielschreiber	Musterverlag	2007	Wir lernen SQL	13.01.2007
2	J. Gutenberg	Gutenberg und Co.	1452	Drucken leicht gemacht	01.01.1452
3	G. I. Caesar	Handschriftverlag	-44	Mein Leben mit Asterix	16.0344
5	Calileo Calilei	Inquisition International	1640	Eppur si muove	1641
Re	lation	Vatikan-Verlag	1860	Adam und Eva	1862
"Ent	liehen"				

Relation "Nutzer"

Nutzer-ID	Vorname	Nachname
10	Hans	Vielschreiber
11	Jens	Mittelleser
12	Erich	Wenigleser

"				
Nutzer-ID	Buch-ID			
10	1			
10	2			
10	3			
12	5			
12	6			

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Relationale Datenbanken

- Anforderungen
 - Atomarität
 - Folge von Operationen wird komplett durchgeführt oder gar nicht
 - Konsistenz
 - Primär- und Fremdschlüssel des Datenbestands müssen in sich stimmig sein
 - Durch Normalisierung werden Redundanzen vermieden
 - Isolation
 - Gleichzeitige Operationen dürfen sich nicht gegenseitig beeinflussen
 - Dauerhaftigkeit
 - Daten müssen auch bei Systemausfall reproduzierbar sein

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Relationale Datenbanken

- Nachteile von Relationalen Datenbanken
 - Schlechte Performanz
 bei großem Datenbestand und vielen Zugriffen
 - Künstliche Schlüsselattribute manchmal notwendig
 - Datensätze müssen exakt ins Relationenschema passen
 - Daten aus verschiedenen Datenbanken können nur mühevoll zusammengebracht werden

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

NoSQL-Datenbanken

Graphdatenbanken
Triple-Stores

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Graphentheorie

Ein einfacher gerichteter Graph ist ein Tupel G = (V, E)

bestehend aus

- Einer Menge an Knoten (vertices) $V = \{v_1, v_2, ..., v_N\}$
- Einer Menge an Kanten (edges) $E \subset V \times V$

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Graphentheorie

- Beispiel
 - G = (V, E)

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

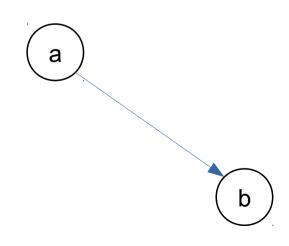
Graphentheorie

Beispiel

- G = (V, E)
- $V = \{a, b, c, d\}$

(b)

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

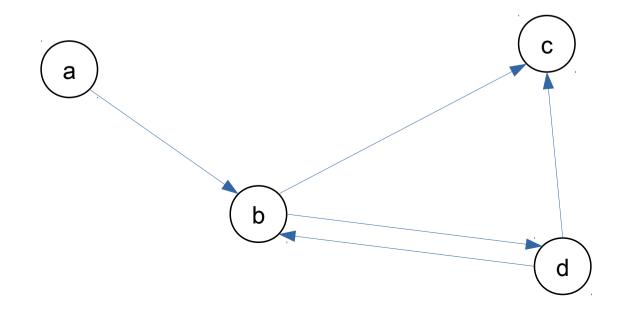


Graphentheorie

Beispiel

- G = (V, E)
- $V = \{a, b, c, d\}$
- $E = \{(a, b)\}$

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik



Graphentheorie

Beispiel

- G = (V, E)
- $V = \{a, b, c, d\}$
- $E = \{(a,b), (b,c), (b,d), (d,b), (d,c)\}$

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Graphentheorie

• Ein kantengefärbter gerichteter Graph ist ein Tupel G = (V, E, f)

bestehend aus

- Einer Menge an Knoten (vertices) $V = \{v_1, v_2, ..., v_N\}$
- Einer Menge an Kanten (edges) $E \subset V \times V$
- Einer Färbefunktion, die jeder Kante eine Farbe zuordnet $f: E \rightarrow C$ sowie eine Menge an möglichen Farben $C = \{c_1, c_2, ..., c_M\}$

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Graphentheorie

Beispiel

•
$$G = (V, E, f)$$

•
$$V = \{a, b, c, d\}$$

•
$$E = \{(a,b), (b,c), (b,d), (d,b), (d,c)\}$$

$$f((b,c)) = rot$$

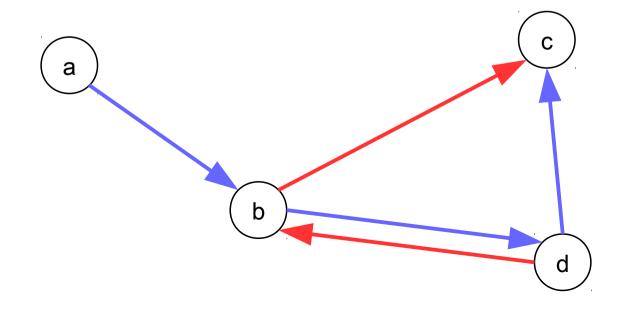
$$f((d,b)) = rot$$

$$f((a,b)) = blau$$

$$f((b,d)) = blau$$

$$f((d,c)) = blau$$

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik


Graphentheorie

Beispiel

•
$$G = (V, E, f)$$

•
$$V = \{a, b, c, d\}$$

•
$$E = \{(a,b), (b,c), (b,d), (d,b), (d,c)\}$$

$$f((b,c)) = rot$$

$$f((d,b)) = rot$$

$$f((a,b)) = blau$$

$$f((b,d)) = blau$$

$$f((d,c)) = blau$$

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Graphdatenbanken

und

Triple-Stores

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Relationale Datenbank

Beispiel: Bibliothek

Beispiel einer Relation "Buch":

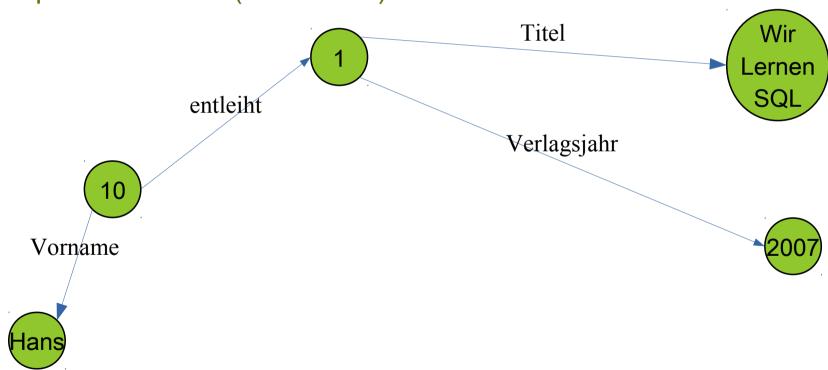
Buch-ID	Autor	Verlag	Verlagsjahr	Titel	Datum
1	Hans Vielschreiber	Musterverlag	2007	Wir lernen SQL	13.01.2007
2	J. Gutenberg	Gutenberg und Co.	1452	Drucken leicht gemacht	01.01.1452
3	G. I. Caesar	Handschriftverlag	-44	Mein Leben mit Asterix	16.0344
5	Galileo Galilei	Inquisition International	1640	Eppur si muove	1641
6	Charles Darwin	Vatikan-Verlag	1860	Adam und Eva	1862

Relation "Nutzer"

Nutzer-ID	Vorname	Nachname
10	Hans	Vielschreiber
11	Jens	Mittelleser
12	Erich	Wenigleser

Relation "Entliehen"

Nutzer-ID	Buch-ID
10	1
10	2
10	3
12	5
12	6


Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Graphdatenbank

Beispiel: Bibliothek (Ausschnitt)

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

- Uniform Resource Identifier
 - Eindeutiger Bezeichner für eine Ressource
- Beispiele für Ressourcen
 - Personen
 - Smartphones
 - Bücher
 - Autos
- Jede URL (Uniform Resource Locator) ist eine URI
 - Eine URL ist eine Web-Adresse (http)

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

RDF Turtle Syntax

- Subjekt
 Ausgehender Knoten
- Prädikat
 Beschriftung der Kante
- Objekt
 Eingehender Knoten
- Punkt

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

RDF Turtle Syntax

- URIs mit spitzen Klammern < ... >
- Subjekte und Prädikate (ausgehender Knoten und Kantenbeschriftung) müssen URIs sein
- Literale gemäß Datentyp, zum Beispiel:
 - Integer 123
 - **Double** 12.3
 - String "bla"

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Triple Store

Beispiel: Bibliothek (mit URI)

http://www.bibliothek.de/Titel
http://www.bibliothek.de/1

http://www.bibliothek.de/Titel
Lernen
SQL"

http://www.bibliothek.de/10

http://www.bibliothek.de/Vorname

http://www.bibliothek.de/Verlagsjahr

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Triple Store

Beispiel: Bibliothek (RDF Turtle Syntax)

http://www.bibliothek.de/10

http://www.bibliothek.de/Vorname

<http://www.bibliothek.de/10>

<http://www.bibliothek.de/Vorname> "Hans"

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Namespace

- Organisation von Bezeichnern
 - Ressourcen erhalten Namespace + eigentlichen Namen
- Wo werden Namespaces verwendet?
 - Dateisysteme (Ordner + Dateinamen)
 - Programmiersprachen (Pakete + Klassen + Variablen/Methoden)
 - Häuserbezeichnung (Postleitzahl + Straßenname + Hausnummer)
 - •

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Triple Store

Beispiel: Bibliothek (Namespace)

@prefix bib: <http://www.bibliothek.de/> .

http://www.bibliothek.de/10

http://www.bibliothek.de/Vorname

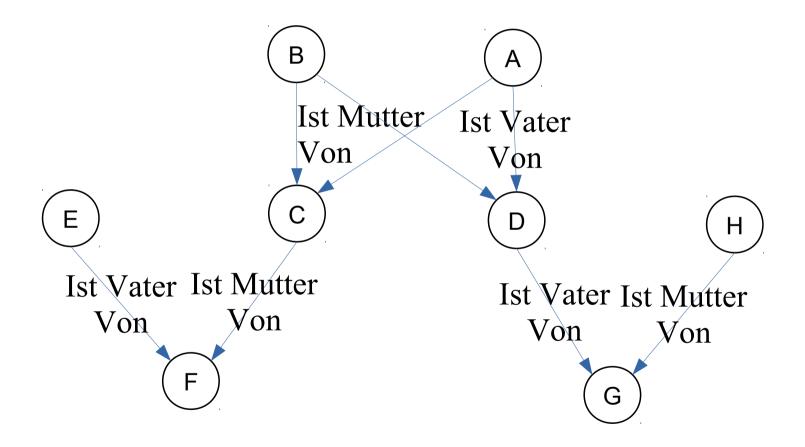
bib:10 bib:Vorname "Hans" .

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Kurze Pause

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Graphdatenbank


- Ein anderes Beispiel für Daten, die als Graph modellierbar sind
 - Anton Ist Vater Von Christine
 - Berta Ist Mutter Von Christine
 - Anton Ist Vater Von Daniel
 - Berta Ist Mutter Von Daniel
 - Emil 1st Vater Von Friedrich
 - Christine Ist Mutter Von Friedrich
 - Daniel Ist Vater Von Gustav
 - Heike Ist Mutter Von Gustav

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Graphdatenbank

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Triple-Store

 Turtle Syntax für den Stammbaum https://www.w3.org/TR/turtle/

```
@prefix idarit: <http://idarit.hs-mainz.de/> .
idarit: Anton
                  idarit: Vater
                                 idarit: Christine
idarit:Berta
                  idarit: Mutter
                                 idarit: Christine .
idarit: Anton
                  idarit: Vater
                                 idarit:Daniel
idarit:Berta
                  idarit: Mutter
                                 idarit: Daniel
                                 idarit: Friedrich
idarit: Emil
                  idarit: Vater
idarit: Christine idarit: Mutter
                                 idarit: Friedrich
idarit:Daniel
                  idarit: Vater
                                 idarit: Gustav
idarit:Heike
                  idarit: Mutter idarit: Gustav .
```


Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Datenbankabfragen

SPARQL

https://www.w3.org/TR/rdf-sparql-query/

```
SELECT ... WHERE {

Variable: ?...

URI: <...>
```


Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Datenbankabfragen

Beispiel:

Wer ist Vater von Daniel?

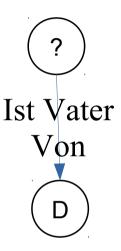
Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Datenbankabfragen

Beispiel:

Wer ist Vater von Daniel?

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik



Datenbankabfragen

Beispiel:

Wer ist Vater von Daniel?

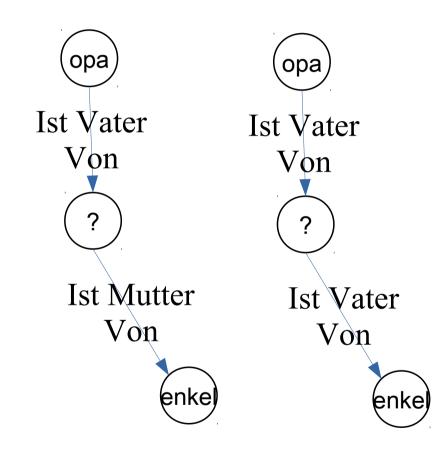

```
PREFIX idarit: <http://idarit.hs-mainz.de/>
SELECT ?person WHERE {
    ?person idarit:Vater idarit:Daniel .
}
```


Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Datenbankabfragen

Beispiel:

Wer ist Opa von wem?

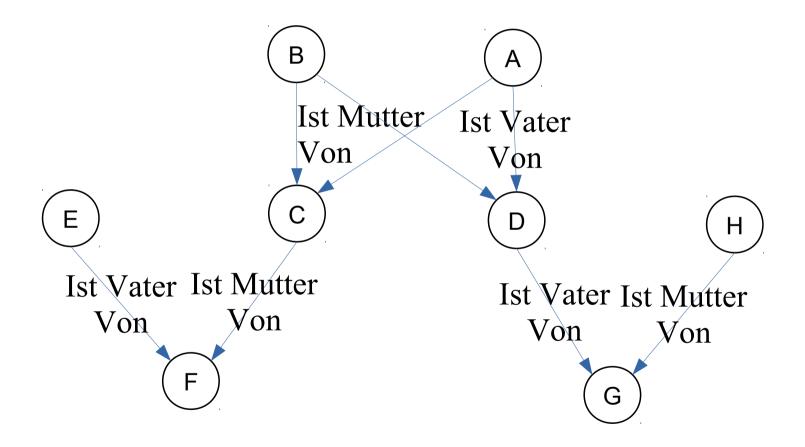

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Datenbankabfragen

Beispiel: Wer ist Opa von wem?

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Datenbankabfragen


opa opa Beispiel: Wer ist Opa von wem? Ist Vater Ist Vater Von Von PREFIX ... SELECT ?opa ?enkel WHERE Ist Mutter Ist Vater ?opa idarit:Vater ?x . Von Von ?x idarit:Mutter ?enkel . enke UNION ?opa idarit:Vater ?x . ?x idarit: Vater ?enkel .

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Weitere Abfragen?

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

SPARQL Filter

- Numerische Filter
 - Beispiel: Der Wert der Variablen x soll größer als 100 sein FILTER (?x > 100)
- Reguläre Ausdrücke

idarit:Daniel . }

- Beispiel: Der String der Variablen x soll ein a enthalten FILTER (regex (?x, "a"))
- Negation
 - Beispiel: x soll nicht Vater von Daniel sein FILTER NOT EXISTS { ?x idarit: Vater

Interdisziplinäre Anwendungen Raumbezogener Informationstechnik

Vielen Dank für die Aufmerksamkeit